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Based on a short-length cylindrical squeeze film model, a simplified two-dimensional
dynamic model for the interaction of a heat exchanger tube and its support, with transitions
to and from solid contact, has been developed. The model includes estimations of the
tube/support deflection, the effects of the surface roughnesses and tube/support inclination.
A test computer code based on the model has been developed which calculates the normal
and tangential squeeze film forces and solid contact forces acting on the tube with large
amplitude arbitrary motions. As well, the code has been extended to simulate a mass with
six degrees of freedom. The model and algorithm have been verified by numerical analysis
and comparisons. The VIBIC finite element computer code which simulates the dynamic
response of a heat exchanger tube as it impacts and rubs against its supports has been
improved and updated by implementing the test code into it. The simulation results appear
reasonable.
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1. INTRODUCTION

The avoidance of flow-induced vibration damage is a major concern of designers and
operators of shell and tube heat exchangers. The turbulent flow of the shell-side fluid
around the tubes results in tube vibration. This kind of vibration can lead to large
amplitude motions or large eccentricities of the tubes in their support plate holes (which
are larger than the tube outside diameters in order to allow for assembly and thermal
expansion). Fluid forces called squeeze film forces occur within the clearance spaces when
the tubes approach their supports and significant solid contact forces may occur when the
tubes’ responses exceed the clearance. The contact forces, especially tangential solid
contact forces, can lead to excessive fretting wear of the tubes. In order to predict the wear
damage, it is necessary to simulate the vibration patterns and calculate these forces. To
do this, finite element computer codes such as VIBIC (for Vibration of Beams with
Intermittent Contacts) have been developed [1, 2]. To improve the modelling, a better
transition to and from the solid contact model is required.

†Also presented with permission at the Symposium on Flow-Induced Vibration—1996, Joint ASME
PVP/ICPVT-8 Conference, July 21–26, Montreal, Canada [24].
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Squeeze film forces have long been of considerable interest. These forces occur between
two surfaces which are separated by fluid and have relative movement mainly in the normal
direction. Several theoretical models [3–7] can be found to calculate the squeeze film forces
for cylindrical geometries.

In a circular cylindrical squeeze film, there are normally two kinds of forces: one is
caused by the viscosity of the fluid when it is squeezed to flow within the fluid film and
the other one is caused by the mass of the fluid when it is accelerated. The two kinds of
forces are named viscous (or damping) force and inertia force, respectively. Furthermore,
there are several sources for the fluid to obtain acceleration, such as the acceleration of
the cylinder, the changes in the velocity direction, as well as centripetal and Coriolis
accelerations. The inertia force is resolved accordingly into several components named
unsteady, convective, centripetal and Coriolis inertia forces.

San Andres and Vance [3] obtained expressions for the unsteady inertia and damping
coefficients of finite length squeeze film dampers. Assuming small vibration amplitude, as
done by many researchers, they neglected the convective fluid inertia force which plays a
relatively important role for large amplitude motions or large initial eccentricities of the
tube. Some researchers have considered this effect in their theory and experiments [4, 5].
When a tube has arbitrary two-dimensional motions, the centripetal and Coriolis
accelerations need to be considered. The corresponding inertia forces have been recently
formulated by several researchers [6, 7].

A suitable squeeze film model for arbitrary two-dimensional, large amplitude or large
eccentricity tube motions was developed by Lu and Rogers [7]. They formulated the
instantaneous squeeze film force for arbitrary tube motions based on a short squeeze film
model. All the terms of the force components are position-dependent and non-linear. The
theoretical model was evaluated using experimental data from a finite length squeeze film.
The comparison shows fair agreement between the theoretical model and experimental
results [7].

The solid contact model must include material elastic and damping forces, as well as
the friction force. Since neither a heat exchanger tube nor its supports are solid, it is
assumed that for small loads the load–deflection relationship can be treated as linear. This
assumption turns Hertzian contact theory [8] into Hooke’s law which is based on modelling
elastic bodies with equivalent linear springs. In order to demonstrate the loss of energy
due to the plastic deformation involved during the impact, a coefficient of restitution is
introduced and studied by many researchers e.g., references [9, 10]. Hunt and Crossley [9]
used the classical definition of coefficient of restitution and obtained a non-linear material
damping coefficient. The new model changed the half-ellipse hysteresis loop produced by
the combination of linear damping and spring to a closed loop which comes to a sharp
point at the origin and seems more reasonable. Physical experiments have confirmed their
postulation.

Lewis and Rogers [11, 12] did some experiments and simulations of oblique impact.
During contact the friction coefficient was observed to rise to a ‘‘plateau’’ value and then
decline to zero as contact was lost. The plateau value was found to be independent of
impact velocity and a bilinear function of impact angle.

When the sliding velocity changes direction or when it is very small, sticking or
adherence may physically occur between the two contacting bodies. A sticking friction
model which can detect the sticking phenomenon of the tube and calculate the striking
friction force has been recently developed and implemented into VIBIC by Tan and Rogers
[13, 14]. In this model, sticking is considered to occur when the sliding velocity is lower
than a given small velocity providing that the sticking friction force, which is obtained from
the force equilibrium, is less than the maximum friction force, which is obtained from the
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Coulomb law. This model gives good numerical results for oblique impact and sliding
reversal cases.

Because the squeeze film model is very different from the solid contact model, difficulties
exist in any transition model which simulates tube motions and calculates the forces acting
on the tube when the tube goes from squeeze film to solid contact with a support and then
bounces back. Theoretically, a squeeze film cannot be broken if perfect geometries and
rigid bodies are assumed. However, this does not happen in real equipment. The tube does
break the squeeze film and becomes involved in solid contact with the support, especially
for a low viscosity medium such as water. In order to combine these two kinds of models
together and smoothly switch the calculation of forces from the squeeze film model to the
solid contact model and vice versa, a robust transition model is required. The development
of a dynamic transition squeeze film model and its implementation into VIBIC are the
objectives of this work. The present model extends an earlier primitive model [25].

2. SQUEEZE FILM AND SOLID CONTACT MODELS

The instantaneous squeeze film force, which is related to the instantaneous position,
velocity and acceleration of the tube within its support hole, was formulated based on a
2p short length, cylindrical squeeze film model [7]. The force is resolved into normal and
tangential components. As shown in Figure 1, the co-ordinates and directions are defined
as follows: the origin point is located at the centre of the sleeve; the normal vector is a
unit vector from the sleeve centre to the instantaneous tube centre; and the tangential
vector is a unit vector perpendicular to the normal vector. Y- and Z-axes are the global
Cartesian co-ordinates on which the tube position or motions in its support hole are
described. The angle from the positive direction of the Y-axis to the normal direction is
denoted as the instantaneous angular displacement C of the tube centre. The components
of the squeeze film force are given by [7]

Fsqn
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Figure 1. Co-ordinate system and unit vectors.
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where g=z1− o2 and o= e/Cr is the non-dimensional instantaneous eccentricity and is
an important factor in calculating the squeeze forces. See the nomenclature for variable
definitions.

As the tube approaches very near the support surface (oq 0·95), the squeeze film will
dissipate and solid contact between the tube and the support will occur. During the
contact, two solid contact forces exist along the normal and tangential direction which are
mainly due to material stiffness and friction, respectively. The forces are formulated as

Fctn =−KXw −1·5bKXwX� w , (2)

Fctt =−sign (vt)mkFctn, for slipping; Fctt =Fsti , for sticking; (3a, b)

where Xw is the deformation of the contact surfaces and K is the combined normal stiffness
of tube and support. The coefficient of material damping, b, is based on the contact
materials and impact velocity [9]. For mild steel, a value of b can be estimated as 0·3 s/m
at low velocities by extrapolating the curves in Goldsmith [15].

Equation (3a) is the classical Coulomb friction model, which is used when the tube is
in a slipping state. Because of the sharp discontinuity in the frictional force of the Coulomb
model when vt reverses direction, if vt is very small, this classical model can cause numerical
chatter of the frictional force. As well, when vt reverses direction or when it is very small,
sticking or adherence may physically occur. In order to overcome the weakness of the
Coulomb model, a new friction model (3a, b) including sticking-slipping motions has been
developed [13] and is used in this work. In equation (3b), Fsti is the sticking friction force
which balances all other forces acting on the tube. When vt is lower than a given limiting
velocity, vc , and if the sticking friction force is less than the maximum static friction force,
the tube is considered to be in a sticking state and is maintained in the sticking state by
Fsti . Once this sticking friction force is larger than the maximum friction force, the sticking
state is broken and the state of the tube will change from sticking to slipping, where the
classical model (3a) can be employed to calculate the slipping friction force.

Lewis and Rogers [11, 12] obtained a bilinear function of impact angle for the friction
coefficient:

mk = m0ui/40, for 0°Q ui Q 40°; mk = m0, for ui e 40°; (4)

where ui is the impact angle measured from the normal direction. Recent unpublished
simulations of their experiments have shown that the reduction in the apparent coefficient
of friction is not due to sticking since the tangential velocity of the contact point does not
approach zero.

3. DYNAMIC MODEL OF TRANSITIONS TO AND FROM SOLID CONTACT

The fluid and solid models have been obtained separately. They are totally different
concepts. When the tube vibrates at large amplitude or large initial eccentricity in its
support hole, both phenomena may occur physically. Therefore both squeeze and solid
contact forces have to be calculated simultaneously.
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Figure 2. Squeeze film and deflections of tube/support.

3.1.  

When the normal velocity of the tube vn is positive, a squeeze film occurs between the
surfaces of the tube and the support. As the tube approaches very near the support, the
normal squeeze force becomes quite large and tends to deform the tube and the support
walls. The deflections increase the minimum film thickness as shown conceptually in
Figure 2. At the same time, the deflections also influence the actual velocity and
acceleration of the changes in the minimum squeeze film thickness.

By not considering surface deflections, the minimum film thickness is h=Cr − e, where
Cr is the radial clearance between tube and support, and e is the instantaneous radial
displacement of the tube centre.

With the elastic tube and support deflections, the minimum film thickness becomes

hx =Cr − e+Xt +Xs =Cr − e+Xw, (5)

where Xt and Xs are the deflections of tube and support, respectively;
Xw =Xt +Xs =combined deflection. Since generally the stiffness of the support is much
greater than that of the tube, Xs can be neglected compared to Xt so that Xw 1Xt.

The concept of tube/support deflection is the core of the dynamic model. The normal
direction squeeze force will itself cause some local deflection. The elastic and damping
forces in equation (2) must therefore balance the normal squeeze force:

KXw + 3
2bKXwX� w =Fsqn(e, ė, ë), (6)

where Fsqn(e, ė, ë) is the squeeze film normal force in equation (1) which is a function of
the displacement, velocity and acceleration of the tube. The value Xw solved from equation
(6) is substituted into equation (2) to get a smooth change when the calculation is switched
from fluid to solid.

As the minimum film thickness has been changed from Cr − e to Cr − e+Xw caused
by the deflection, the squeeze film force acting on the tube will be affected. In equation
(1), the value of displacement e (or o) in fact indicates the minimum film thickness because
the total squeeze force is mainly caused by the high pressure around the region of the
minimum film thickness. Thus one can re-evaluate e as

ee = e−Xw , (7)

where ee is called ‘‘effective’’ displacement.



.   . . 626

Furthermore, for the same reason, the normal velocity and acceleration of the tube also
can be re-evaluated as

ėe = ė−X� w , ëe = ë−X� w. (8)

Then the force balance equation (6) becomes

KXw + 3
2bKXwX� w =Fsqn(ee , ėe , ëe), (9)

where (ee , ėe , ëe) are the ‘‘effective’’ values.

3.2.   

One hopes not to calculate the squeeze film force when o is quite large because of the
theoretical weakness of dividing by zero when o:1. In practice, the tube cannot reach the
point of o=1 without solid contact because of imperfect engineering equipment. This leads
to the concept of effective dimensions which allows solid contact before o reaches 1.

As shown in Figure 3, the inclination of the tube relative to its support surface always
exists due to angular misalignment and tube rocking motions. This causes solid contact
before the minimum film thickness, hx , goes to zero. One has

hs =(L/2) tan a, (10)

where hs is the clearance at the support centre when a tube with slope a contacts the edge
of the support. A typical value for a is 0·05° [16]. In practical terms, hs decreases the
effective dimension of the support hole (i.e., R).

As shown in Figure 4, when the tube approaches very near the support, solid contact
occurs at some roughness peaks before hx goes to zero because of the existence of the
surface roughness of tube/support. hr is defined as the sum of the r.m.s. roughnesses of
the tube/support surfaces. For a broached or reamed hole and a typical tube, hr =3 mm
is used [17]. The consideration of roughness leads to the concept of a transition zone where
combined calculations of fluid and solid forces are carried out.

3.3.     

Considering the deflection Xw , tube inclination hs and surface roughness hr , as well as
squeeze film normal force Fsqn and material resistance force, a simplified dynamic model
as shown in Figure 5 was obtained, where c is the non-linear material damping coefficient
(1·5bKXw). Material elastic and damping forces compose the material resistance force.

Figure 3. Inclination of tube in its support.
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Figure 4. Surface roughnesses of tube/support.

In order to determine when solid contact will occur, according to this dynamic model,
the following criteria and calculations are used:

(1) If hx e hr + hs , there is no solid contact at all. The tube is separated thoroughly from
the support by fluid. This stage is the fully squeeze zone. At this time, the squeeze film
model is used so that Fsqn and Fsqt are calculated using equation (1) with effective values
(ee , ėe , ëe).

(2) If hs Q hx Q hr + hs , the tube is in the roughness zone and the squeeze film is
dissipated by some roughness peaks in the region around the minimum film thickness area.
Slight contact occurs now. At this stage, both fluid and solid forces exist and neither of
them is dominant. This stage is considered as the transition zone which is used to gradually
switch from fluid calculation to solid calculation. Since the wall deflection Xw is calculated
based on the normal force balance equation, the normal fluid force is equal to the normal
solid force whenever Xw is calculated from equation (9). The normal force can be switched
smoothly from the fluid model to the solid model when the tube comes into the transition
zone because at this moment, the deflection obtained from equation (9) is equal
to (e−Cr)+ (hr + hs) which is the same as the solid wall deflection without squeeze
force as seen in Figure 5. Thus only the normal solid force is taken as the total
normal force during the transition zone. However, for the tangential force, both fluid and
solid forces exist. The tangential squeeze force is hardly affected by the tiny contact

Figure 5. Dynamic model of squeeze film and deflection
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area so that it always plays a significant role which cannot be taken over by solid friction.
In order to gradually take the solid friction force into consideration in the total tangential
force, a blended calculation of fluid and solid forces is used at this stage. The calculation
is formulated as

Fn =Fctn , Ft =Fsqt + pFctt , (11)

where Fsqt is defined in equation (1) and p is a weighting factor used to show the proportion
of solid friction force in the total tangential force, valued between 0 and 1, and is adapted
from Oden and Martins [18]:

p(hx)= 1
2 + 1

2(2− =g(hx)=)g(hx), (12)

where g(hx)= (2hx −2hs − hr)/hr .
(3) If hx E hs , it is considered that real solid contact occurs at the corner of the sleeve

as seen in Figure 3. This stage is the fully contact zone. At this time, the contact normal
force is dominant while squeeze and contact tangential forces have full contributions. The
following calculations are used:

Fn =Fctn , Ft =Fsqt +Fctt , (13)

where Fsqt is obtained from equation (1) in which the eccentricity is kept as a constant value
e=Cr − hs.

Once the tube gets into contact (i.e., in transition or fully contact zones), the solid
deflection of the tube/support walls is no longer calculated by equation (9) but by

Xw =(e−Cr)+ (hr + hs). (14)

3.4.  

When the normal velocity of the tube is negative (vn Q 0), the tube is either losing solid
contact or moving away from a support surface. The same criteria described above are
used. Instead of the ‘‘squeeze’’ force, a suction force caused by the negative gauge pressures
occurs in the vicinity of the minimum film thickness. When Cr − ee hr + hs , there are no
solid forces so that the fluid suction force is dominant. This force acts to slow down the
wall of the tube and causes the equivalent spring to increase the distance between the tube
centre and the tube wall. The same equation (9) is used to calculate the wall deflection.
However, the suction force cannot be as large as the squeeze normal force because the
negative gauge pressure at most can only be one negative atmosphere. In fact, if the
absolute pressure becomes lower than the liquid vapor pressure, the liquid film ruptures
and a cavity is formed in this negative gauge pressure region. Within the cavity, the
pressure is nearly constant and almost equal to absolute zero pressure [19]. In order to
have an estimation for the maximum suction force, a very rough assumption is considered.
It is assumed that the cavity occurs all over the entire negative pressure area. In lubrication
terms, the 2p film becomes a p film. This assumption probably over-estimates the
maximum suction force.

With the above assumption, the maximum suction force can be obtained roughly by the
integral

Fmax 1g
p/2

−p/2

(Poper −Pvap)rL cos u du=2(Poper −Pvap)rL, (15)

where Poper is the operating pressure and Pvap is the liquid vapor pressure.
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4. MODEL IMPLEMENTATION INTO TEST CODE AND VIBIC

To simulate the dynamic response of a heat exchanger tube as it impacts and rubs
against its supports, a finite element computer code named VIBIC has been developed
[1, 2]. The present work is intended to improve the transition to and from solid contact
model. This section explains how the model is carried out numerically. For ease of testing,
it was implemented into a small test code first before implementing into VIBIC.

4.1.    

In order to get a smooth transition when the tube gets into solid contact from the squeeze
film or loses contact, a dynamic model which considers the wall deflections of the
tube/support has been developed and shown in Figure 5. The governing equation for the
combined deflection Xw is given by equation (9).

It can be seen that equation (9) is an implicit equation: the left side is a function of Xw

and so is the right side. Since the right side of the equation is a very complex function
of Xw expressed by equation (1) (almost all the variables are affected by Xw), it is not easy
to get an explicit solution of Xw . The Newton–Raphson iteration method is chosen in the
computer code to obtain Xw from equation (9):

Xw(m+1)=Xw(m)−F(Xw(m))/F'(XW(m)), (16)

where F(Xw) is an iterative function of Xw and formulated as

F(Xw)=KXw + 3
2bKXwX� w −Fsqn(ee , ėe , ëe). (17)

F'(Xw) is its derivative with respect to Xw and is evaluated numerically in the code. After
Xw is obtained, X� w and X� w in equation (8) are calculated numerically by using simple
backward differences of deflection and velocity, respectively.

4.2.   

The dynamic model introduced in the last section has solved the difficulty of the squeeze
film calculation in equation (1) when o:1. For the other extreme, o:0, a problem still
exists. As shown in equation (1), the inertia terms contain o2 or o3 in the denominators.
These terms become inaccurate when o:0. The limits of equation (1) were obtained:

Lim
o:0

Fsqn/L3R=−(mp/C3
r )vn −(rp/12Cr)an ,

Lim
o:0

Fsqt/L3R=−(mp/C3
r )vt −(rp/12Cr)at . (18)

It is shown that (vn , vt) or (an , at) have exactly the same influence on the squeeze film forces.
This means the normal and tangential directions have no difference when o:0, which is
physically true. The squeeze force equations can therefore be written directly as Y and Z
force components for very small values of o.

Using the models and algorithm described above, a computer code has been developed
for calculating the forces acting on a heat exchanger tube, as well as the tube trajectory.
A 0·6 m long (between modal node points) portion of a heat exchanger tube is modelled
as a simple two-degree-of-freedom mass-spring system with a 0·24 kg mass (myz) and
69 N/mm spring stiffness (kyz) in the Y and Z directions. A loose support is at mid-span.
The differential equations describing the free motion of the tube can be expressed by

myzay + kyzey =Fy , myzaz + kyzez =Fz . (19)

For simplicity, damping along the tubing is neglected.
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To solve for the tube motion and the support forces, the fourth order Runge–Kutta
method is used for numerical integration. In the code, it is assumed that the differences
in ay and az between two consecutive time steps are not remarkable and have negligible
feedback on Fy and Fz . The previous step’s accelerations a(n−1)

y , a(n−1)
z are used and the

following explicit equations are solved in the Runge–Kutta integration calculations:

myza(n)
y + kyze(n)

y =Fy(e(n)
y , e(n)

z ; v(n)
y , v(n)

z ; a(n−1)
y , a(n−1)

z ),

myza(n)
z + kyze(n)

z =Fz(e(n)
y , e(n)

z ; v(n)
y , v(n)

z ; a(n−1
y , a(n−1)

z . (20)

In VIBIC, each node of the tube has six DOF even though only a two DOF squeeze
film model has been presented. In order to implement the model into VIBIC, the test code
has been extended to simulate the tube with six DOF. For the DOF other than the Y and
Z directions, the squeeze film forces are assumed negligible and only an additional constant
damping factor is applied for each DOF. (Rogers et al. [16] showed that rocking motions
had negligible influence on lateral squeeze forces.) The masses and stiffnesses on each DOF
are calculated based on a simply supported beam system. The general equation of the
system for each DOF is

mdofU� dof + cdofU� dof + kdofUdof =Fdof , (21)

where dof can be any one of x, y, z, rx, ry, or rz which represent the X, Y and Z directions
and rotations about X, Y and Z; Fdof is the external force (or moment) including squeeze
film forces, solid contact forces (and moments) and excitation forces. The sticking/sliding
friction algorithm developed by Tan and Rogers [14] has been merged into the test code.

4.3. 

It is difficult to confirm that the above models and the algorithm are acceptable and
correct without any comparison and verification. Unfortunately, there are no experimental
data to be compared with, and no literature can be used to validate these models directly.
Therefore, numerical analyses and comparisons are conducted to verify the presented
models and algorithms.

4.3.1. System equivalent damping
The system damping factor is one of the most important parameters in heat exchanger

tube dynamics. Pettigrew et al. [20] have some experimental data on damping on liquids
and give several semi-empirical expressions to formulate damping. However the simulated
tube system in the test code has a very strong non-linear damping factor which comes from
the squeeze film force. In order to compare this damping ratio with experimental data to
see whether it is in the normal range of real system squeeze-film damping ratios, an
equivalent damping ratio of this system is needed.

The equivalent damping ratio can be calculated from the frequency response of the
simulated tube. Figure 6 shows two frequency response curves which are obtained by
applying a 0·6 N exciting sine force to the tube system in the Z direction and varying the
force frequency from 75 Hz to 95 Hz very slowly to allow the system to reach a steady
response. The solid line is obtained with every squeeze film force term in Fsqn in equation
(1) and the dashed line is calculated with only the damping term expressed by the first term;
because the fluid inertia is taken away, the resonant frequency and the whole curve are
moved to a slightly higher frequency area. This phenomenon coincides with theoretical
expectations. The equivalent damping ratio is calculated by a linear system’s governing
equation:

z1 (v2 −v1)/2vn , (22)
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Figure 6. Frequency response of tube system: ——, damping and inertia; – – –, damping only.

where vn is the resonant frequency where the system reaches the largest response assuming
z�1; v1 and v2 are the frequencies on either side of resonance where the system reaches
0·707 times the largest response. For the case shown in Figure 6, z=0·037.

With this method, a series of simulations has been done by changing the amplitude of
the exciting sine force. As seen in Figure 7, with increasing amplitude of the exciting force,
the tube response increases but is restricted by the loose support. The damping ratio
increases almost linearly with the excitation force; it is in the range of 0·7–6% which is
comparable with the results obtained by Pettigrew et al. [20]. From the view of system
equivalent damping, it is clear that the simulated system is comparable to a real system.

4.3.2. Comparison with Larsson and Lundberg’s work
Larson and Lundberg [21] did some impact experiments of a roller on a lubricated

surface and used a similar model as is described in section 3. The studies also involved
squeeze film and solid forces for their lubrication research. Even though the objectives are
not the same, comparisons are still useful.

Substituting the squeeze film model and parameters used by Larsson and Lundberg into
the test code and keeping the algorithms described in previous sections, such as the
Runge–Kutta integration method to solve for the tube motion and the Newton–Raphson
iteration method to calculate the wall deflection, excellent results as shown in Figure 8 were
achieved and which are almost identical to those Larsson and Lundberg obtained with

Figure 7. Force–response–damping relationship: —w—, response; – –r– –, damping ratio.
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Figure 8. Reproduction of Larsson and Lundberg’s work: (a) squeeze film force and film thicknesses as
function of time during impact; (b) velocities of tube wall and tube centre during impact.

their own algorithms. From the comparison with Larsson and Lundberg’s work, it can
be seen that the test code algorithms work very well and are reliable.

4.4.      

The forces expressed in equation (1) are for short length cylindrical squeeze films in
which only the axial flow along the tube is considered and the circumferential flow is
neglected. Therefore, equation (1) will over-estimate the squeeze forces in most real heat
exchangers. Lu and Rogers [5] formulated a finite length cylindrical squeeze film model
for 1-D diametrical motions (which has no centripetal and Coriolis inertia forces) as

Fsqn =−
mLR3

C2
r

La1
12p

g3 ȯ− rLR3La2
2p(1− g)

o2 ö− rLR3La3
8p(1− g)2

5o3g
ȯ2, (23)

where La(i) (i=1, 3) are side leakage factors for each term and have the form
La(i) = 1− tanh (l(i)L/D)/(l(i)L/D).

The finite model is more accurate for calculating the squeeze film force in most real heat
exchanges, but it cannot simulate arbitrary 2-D motions so that it has little practical value.
A simple modification of the short model has been carried out by comparing the short
model (1) with the finite model (23) under the same free motion conditions. Figure 9 shows
one test case obtained for L/D=1 with a set of typical heat exchanger parameters. The
solid line is calculated from the short model and the dashed one from the finite model.
The mean value of the ratio is then calculated to be 1·45. By changing L/D from 0 to 2·0,

Figure 9. Comparison of short and finite width models: ——, short model; – – – – –, finite model; · · · ·, ratio;
Cr =0·19 mm, ez(0)=0·08 mm, Fz =3 N, L/D=1.
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Figure 10. Modification factor for short width model: —w—, computational; · · · ·, y=1+0·0037x+0·43x2.

Figure 10 is obtained in which the solid line shows the computational relationship between
the mean value of force ratio and L/D; the dotted line is a quadratic regression equation
which fits the computed result very well. Therefore, a modification factor can be
expressed as

Fmod =1/(1+0·0037L/D+0·43(L/D)2). (24)

Simply adding this factor to equation (1) reduces the over-estimation of the squeeze factor.

4.5.   

VIBIC is a computer software package written in FORTRAN which simulates the
dynamic behaviour of a 3-D vibrating beam as it interacts with its loose supports. It was
originally developed by Rogers and Pick [1, 2] and has been being improved from Version
1·0 in 1975 to the present Version 6·2 which has more than 6000 statements. The update
from Version 6·0 to 6·1 (in 1994) included the work by Tan and Rogers [14] by
implementing a new friction model which can simulate the sticking-slipping phenomenon
between contacting surfaces. VIBIC now consists of two parts: Part 1 is called FREMOD
(for natural frequencies and mode shapes) in which the beam (i.e., tube) is modelled using
3-D beam finite elements which include the effects of shear deformation and rotational
inertia. The undamped natural frequencies and mode shapes are calculated using the RSG
(EISPACK) eigen-solver. Part 2 is called VIBSIM (for vibration and impact simulation)
in which the tube vibration and impacts against its supports are simulated by using a fourth
order Runge–Kutta integration method and modal superposition. The modal basis
excludes the effect of the loose supports since the support forces acting on the tube are
calculated separately [22]. Finally, the wear work rate (normal forces multiplied by sliding
velocity) is given by VIBSIM based on the impact history and contact forces in order to
further analyse for wear damage.

Because the model described by equation (1) is only suitable for cylindrical squeeze films,
the implementation of the test code is only for the circular support type even though
VIBSIM accepts four types of support (circular hole, trilobed broached hole, scallop bars
and flat bars). For non-circular support types, the squeeze film is not very strong [23]. As
well, there are no suitable theoretical models for these types of squeeze film so that no
squeeze film force is calculated for non-circular supports.

It was not very difficult to put the test code into VIBSIM since everything that the test
code needed could be found easily in VIBSIM and vice versa. Two new subroutines named
WALDEF, which mainly calculates the wall deflection, and SQZFOR, which calculates
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the squeeze film forces, and one new function named FXW, which calculates equation (17),
were reconstructed from the test code and interfaced with VIBSIM.

5. RESULTS AND DISCUSSION

This section will give some results for three simulation cases; two of them are from the
test code and one is from VIBIC. All the results are obtained by using a typical set of heat
exchanger parameters: D=15·9 mm, Cr =0·19 mm, K=16×106 N/m, m0 =0·4,
ri = rd =1000 kg/m3, m=0·001 Ns/m2. L/D in the test code is set to be 0·5 due to the short
length squeeze film model and in VIBIC it is 1·4 since the modified short model is used
to fit a real situation. The constant time increment for numerical integration is set to a
value in each case which is small enough so that there is no significant difference in the
results if it is reduced more.

Case 1 shown in Figure 11 simulates a freely decaying orbital motion with two significant
solid contacts based on the two-DOF system. The initial position is at e(0)

y =0·17 mm,
e(0)

z =0. In order to obtain a significant contact to show how the dynamic model and
algorithms work, the initial velocity is set to be v(0)

y =0, v(0)
z =0·34 m/s which is quite large

and not physically reasonable. Therefore, the results shown in Figures 11(b) and (c) in

Figure 11. Free motion with solid contact. (a) Trajectory of tube: ——, clearance circle; - - - -, incline; ...,
roughness; – – – –, tube centre; ——, tube wall. (b) Normal and tangential force history: ——, normal force;
– – – –, tangential force. (c) Normal force as function of displacement.
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Figure 12. Forced motion with reversal. (a) Trajectory of tube: ——. clearance circle; - - -, incline; · · · ·,
roughness; – – –, tube centre; ——, tube wall. (b) Normal and tangential force history: ——, normal force; – – –,
tangential force.

which the maximum normal and tangential forces are about 280 N and 160 N, respectively,
are large for a real heat exchanger. Figure 11(a) shows the trajectory of the tube. The radii
of the three circles are Cr , Cr − hs and Cr − hs − hr , respectively. The dashed trajectory line
represents the track of the tube centre while the solid line is the track of the ‘‘tube wall’’
(tube centre displacement minus wall deflection). The freely decaying orbit seems
reasonable and indicates that the mass–spring model and Runge–Kutta method are
working well. The deflections of the tube wall (i.e., the gap between the solid and dashed
trajectory lines) are significant and seem credible which indicate that the dynamic model
shown in Figure 5 and the Newton–Raphson iterating method are working well. Figure
11(b) shows the normal and tangential force histories corresponding to Figure 11(a). For
the normal force shown by the solid line, positive values represent suction forces which
are limited by the maximum suction Fmax in equation (15). A negative normal force means
either a squeeze force or a contact force. As seen, both the normal and tangential forces
change reasonably smoothly during the transitions to and from solid contact. The normal
force as function of the radial displacement is given by Figure 11(c) in which the arrows
marked on the line indicate the direction of the tube motions. The squeeze force reaches
approximately 65 N when the roughness zone is entered. Lines 1 and 2 show the two
transition-to-solid-contact processes. The slope of the almost straight line 3 represents the
tube–support contact stiffness K. Lines 1 and 2 blend smoothly with line 3 as required.
The distances between lines 1 and 3 or lines 2 and 3 during contact are caused by the
material damping. This figure shows that the transition and contact models work well.

Case 2 (Figure 12) shows the tube motions driven by two external sine forces along the
Y and Z directions which are 10 N at 90 Hz and 20 N at 26 Hz, respectively. The initial
condition is: e(0)

y =0·1 mm, e(0)
z =0; v(0)

y =0, v(0)
z =0·1 m/s. As shown in Figure 12(a), the

motion begins at the initial position, point 0, and involves three reversals of sliding
direction at points 1, 2 and 3 marked in sequence; two solid contacts occur at the points
4 and 5; the motion is stopped at point 6. Figure 12(b) shows the normal and tangential
forces similarly to Figure 11(b). When the tube is pressed against its support wall and slips
along the wall, sinusoidal bounces occur as shown by the solid line (normal force history).
The numbers marked on the dashed line (tangential force history) correspond to the points
marked in Figure 12(a) and clearly show reversals in sliding direction. Reversals 1 and 3
occur in the fully squeeze zone so that the tangential force changes smoothly from negative
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to positive. Reversal 2 happens in the transition zone so that part of the solid friction is
counted in the total tangential force and causes the small jump at point 2.

Figure 13 (Case 3) is obtained from VIBIC for a finite element model in which a 0·6 m
long piece of tube is modelled as 20 equal length beam elements with a loose support at
the middle (i.e., the 11th node) and two flexible no-clearance supports at the ends (i.e.,
the first and 21st nodes). Two DOF, x and rx, are constrained for the whole tube; they
could be included but result in high frequency oscillations. The y and z DOF are
constrained additionally at the ends. Therefore, there are 80 kept DOF (i.e., equations left
after rigid constraints are removed) in the finite element model. Fourteen modes are
included in the simulation (i.e., seven in each plane).

Case 3 is a ‘‘mostly’’ free motion case with three solid contacts. ‘‘Mostly’’ is used because
in the beginning of the motion, the tube is driven at node 6 by two external forces in the
Y and Z directions for 0·18 cycle to obtain a large enough velocity (the initial
motion parameters are all zero). The rest of the motion is free. For the same reason as
in Case 1, in order to obtain several significant contacts to see how the transition model
works, the external forces are set to be a 200 N, 100 Hz cosine force on Y and a −600 N,
400 Hz sine force on Z which are large for a real heat exchanger. As well, the forces in
Figure 13(b) also have very large peak values. However, this case shows nicely that VIBIC
works very well with the new implementations. The tube trajectory at node 11 where the
support is located is shown in Figure 13(a). Similar to Case 1, the tube is involved in three
significant solid contacts and is deflected heavily during the transitions to contacts. The
trajectory after half way to the end seems strange and not like free motion but it is. The
reason is that the tube in VIBIC is modelled as a finite element model rather than the
mass–spring system in the test code so that high frequency modes exist and are excited
by the severe contacts. As well, the forces in the Y and Z directions are quite different
so that the mode shapes excited by the forces are different too. These cause the strange
tube trajectory. Figure 13(b) shows the normal (solid line) and tangential (dashed line)
forces acting on node 11. The forces vary smoothly during the transitions to and from solid
contacts and the positive normal force is limited by the maximum suction force as
expected.

Figure 13. VIBIC Result: free motion with solid contact. (a) Trajectory of tube: ——, clearance circle; - - -,
incline; · · · ·, roughness; – – –, tube centre; ——, tube wall. (b) Normal and tangential force history: ——, normal
force; – – –. tangential force.
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6. CONCLUSIONS

A simplified two-dimensional model for a cylindrical squeeze film with transitions to
and from solid contact has been developed which includes an estimation of the
tube/support deflection and approximates the effects of the surface roughness and
tube/support inclination. A simple function of support length (width) to tube diameter is
used to adapt the short length squeeze film formulation to finite length applications.

Large amplitude and arbitrary tube motions have been simulated by a test code which
has been developed based on the models and algorithms. A new friction model with
six-DOF motion has been merged into the test code. Numerical analyses and simulations
have been done which show that the models and algorithms appear to work well. The test
code has been implemented into VIBIC after verification and modification.

The simulation results for three typical tube motion cases have been investigated; two
cases are obtained from the test code and one is from the new version of VIBIC. The results
give reasonable large amplitude tube trajectories and squeeze/contact forces which are
based on the values of the instantaneous kinematic variables. The dynamic transition
model works very well and the transitions to and from solid contact are reasonably
smooth.
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APPENDIX: NOMENCLATURE

ay , az accelerations of tube along Y and Z directions.
an , at accelerations of tube along normal and tangential directions, an = ë− eC� 2,

at = eC� +2ėC� .
Cr radial clearance between tube and support, Cr =R− r.
cdof coefficients of viscous damping for each DOF.
D diameter of support hole, D=2R.
ey , ez displacements of tube centre along Y and Z directions.
e, ė, ë instantaneous radial displacement of tube centre and derivatives with respect to

time.
Fctn, Fctt contact forces in normal and tangential directions.
Fdof projections of resultant force on each DOF.
Fmax maximum suction force.
Fmod modification factor.
Fn , Ft projections of resultant force on normal and tangential directions.
Fsqn , Fsqt squeeze film forces in normal and tangential directions.
hx minimum film thickness that considers deflection, hx =Cr − e+Xw.
K tube/support combined stiffness.
kdof stiffnesses of beam system for each DOF.
L support width.
mdof masses of beam system for each DOF.
R, r support hole and tube radii.
Udof , U� dof , U� dof displacements for each DOf and their derivatives.
vy, vz tube velocities along Y and Z directions.
vn, vt tube velocities along normal and tangential directions, vn = ė, vt = eC� .
g (1− o2)1/2.
l1, l2, l3 Solution eigenvalues of side-leakage factors. l1 =z(1+2o2)/g, l2 =1/zg,

l3 =X9(2g3 −2+3o2)/
8g2(1− g)2
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o, ȯ, ö Instantaneous eccentricity and its derivatives, o= e/Cr or o=(e−Xw)/Cr .
m Absolute fluid viscosity.
mk , m0 Kinetic friction coefficient and plateau friction during impact.
r Fluid density.
C, C� , C� Instantaneous angular displacement and its derivatives.


